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Empirical bifurcation analysis of optical pattern formation
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The experimental characterization of pattern forming bifurcations is difficult, since the unstable solutions are
generally not accessible in experiments. In nonlinear optics, a novel control scheme allows one to select and
stahilize generic patterns and thus to track these solutions in parameter space. This Fourier space scheme is
applied to a single-feedback system and the amplitudes of roll, square and hexagon patterns are determined
experimentally. Even though the bifurcation is imperfect, the coefficients of a prototype amplitude equation are
recovered. The coefficients show satisfactory agreement with theory and with numerical simulations, which are
performed for comparison. The simulations also clarify the origin of the imperfect bifurcation in the experi-
ment: boundaries and speckles appear to have an unexpected strong influence.
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[. INTRODUCTION and numerical simulations. Experiments on continuous sys-
tems are often restricted to a single spatial dimension. In this
The spontaneous formation of spatial patterns is investireport, we will present experimental control on a two-
gated in many fields of physics, and other disciplines such adimensional system. The control signal is not only derived
chemistry and biology1]. Nonlinear optical systems exhibit from the full spatial distribution of the system state, but itself
a wide variety of such self-organization effects as well,is also spatially continuous. Moreover, the control works in
which in this area have been examined systematically in theeal time.
last decadd?2]. Though optical systems are very different  Optics opens new access to the control of extended sys-
from the classical pattern forming systems regarding theitems, offering a number of advantages. The possibility to
microscopic physics, the macroscopic phenomena are susuperpose light waves makes it easy to inject external, spa-
prisingly similar. tially and temporally modulate@ontro) signals into a given
One of the main aspects in pattern formation is the analysystem. Furthermore, the spatial Fourier transformation ca-
sis of the first bifurcation, where out of the uniform state apabilities of simple lenses can allow a high-speed derivation
number of new stable and also unstable solutions evolve. Thef the spatial control signal distribution. Some of the advan-
investigation of this bifurcation is, in general, limited to the- tages of optics can be made use of in other systems, e.g.,
oretical approaches. Experimentally, only stable solutions areshen the nonlinear process is photosensifde
observable, hiding possible coexisting unstable states. In or- To clarify the notation, we would like to stress that we use
der to access unstable states, one has to apply a kind tifie terminuscontrol for schemes where the intention is to
control. This control must on one hand allow one to selecktabilize unstable system states of the unaffected sy&sem
particular states out of the set of coexisting solutions. On thejet states In particular, the applied control signal should be
other hand, the selected state must be stabilized, in case itderived from the system state and the control signal should
unstable. Such a scheme should, of course, not alter the sy@anish, when the target state is reached. This is in contrast to
tem properties—apart from the stability of the solutions.  forced systems, where an external, independent signal is
With the success of the concepts to control temporabpplied—an approach that alters the systems states.
chaos, there have been attempts to extend this idea to spa-Here, we will make use of a Fourier space control
tially extended systemf3—6]. A first simple step was to scheme, by which we stabilize different stationary, spatially
consider coupled maps or networks of nonlinear oscillatorsperiodic patterng7—11]. This scheme makes use of the fact
For continuous systems, often, the control has been applietthat the spontaneous patterns, which evolve above threshold,
in a global, spatially uniform way or by modulation of a consist of a few discrete Fourier modes. In the following, we
single parameter. More elaborate schemes consider a locase the Fourier control as a tool to investigate unstable pat-
control at a finite number of control sites in space. The unterns, which are not accessible otherwise. In particular, the
derlying general problem, in particular for experiments, ispattern amplitudes are measured, giving an empirical bifur-
that one needs to manipulate physical quantities in time andation diagram. From this diagram, the coefficients of an
space. This task is difficult if the corresponding quantitiesappropriate prototype amplitude equation are derived. A
are, for instance, heat, concentration of chemical reactants, e@omparable experimental determination of amplitude equa-
flow fields. Furthermore, the spatially distributed control sig-tions coefficients has recently been performed for a spatially
nal must be derived in time, which depending on the relevanbne-dimensional, fluid-dynamical syste®.
time constants can be difficult. As a consequence, the major- In the remainder of this paper we will first briefly review
ity of the work published so far considers theoretical aspectshe nonlinear optical system together with the implementa-
tion of the Fourier space control scheme. Section IIl de-
scribes how individual pattern solutions are selected and
*Email address: ralph.neubecker@physik.tu-darmstadt.de tracked in parameter space to determine an experimental bi-
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FIG. 1. Schematic drawing of the setup. LCLYV, liquid crystal light valve; BS, beam splifiermirrors;L, lenses. The phase modulated
beam, as reflected by the LCLV read sitles of LCLV) propagates to the LCLV write sidehs of LCLV). The control loop is indicated by
a gray box. It contains the spatial Fourier filter set up by the leh3e& 8 and the mask FM. The appropriate phase of the control wave is
set by a Babinet-Soleil phase shifter PS. The control can be deactivated by closing Shlitteoptical power in the critical wave number
k., as selected with the lense9, L10 and the detection mask DM, is measured with the detector PD2. The optical nedinfizldlane
corresponding to the LCLV write siflend the far field are detected by video camdf@8D1, CCD2. The control signal is monitored by
a camerg CCD3J), alternatively by a photodetector.

CCD3

furcation diagram. In Sec. IV, the corresponding results ofafter a certain propagation lendtb3]. A periodic phase pro-
numerical simulations are presented and are compared to tliée is transferred into an intensity profile of the same shape
experimental findings. In Sec. V, we investigate the differentafter a certain fraction of this so-call@@lbot length which
possible causes, which lead to an imperfect bifurcation. Thelepends on the light wavelength and the spatial periodicity
relation between the phase and intensity amplitudes is estabf the profile. The spontaneous pattern now selects its own
lished in the Appendix. The phase is the variable used in thevave number such that, after propagation over the given
model, while the intensity is the experimental observable. length in the setup, the resulting intensity profile at the LCLV
write side has maximum contrast. Since the Talbot effect

II. INTRODUCTION TO THE SYSTEM originates from diffraction, there is a long range spatial cou-
_ _ pling throughout the pattern.
A. The nonlinear optical system The setup is calledingle feedbacksince the modulated

The optical nonlinearity is provided by a so-calléguid ~ Wave is fed back to the optical nonlinearity only once, in
crystal light valve(LCLV), acting as saturable defocusing contrast to resonators with multiple passages of the light
Kerr-type nonlinearity. The LCLV is a multilayer structure wave. Such single-feedback systems recently became quite
with a read sideliquid crystal layey and an intensity sensi- popular[14—16, because they have a number of advantages,
tive write side (photoconductdr The two layers are sepa- €.9., the clear separation of the two main ingredients for
rated by a dielectric mirror and sandwiched by transparengpatial instabilities: diffractional spatial coupling and the
electrodes to which an ac voltage is applied. According to théonlinearity. The use of LCLVs as optical nonlinearity has
local illumination of the photoconductor, the liquid crystal Proven to offer great experimental flexibility in various
layer locally changes its refractive ind¢g2]. A uniform  implementationg17]. In particular, it is possible to realize
pump laser beam, reflected by the LCLV read side, acquirelrge aspect-ratio patterns even with low laser powers.

a transverse phase shift distributidr(x,y), which is deter- The theoretical model for the system used here is com-
mined by the intensity profilé,(x,y), incident at the LCLV ~ posed of two parts: the propagation of the light wave in the
write side. feedback loop and the nonlinear response of the LCLV. From

In our setup, the phase modulated pump beam is fed bad'ae paraxial wave equation, we can derive a formal solution
to the write sidgsee Fig. 1 During propagation through the

feedback loop, spatial phase variations are transformed into EW=exr< —j LAL)Em=EX[< —j LAL

intensity modulations by means of diffraction. The LCLV 2ko 2ko

then transforms this intensity modulation back to a phase x[exp(—i®) E.] (1)
p 1

modulation, such closing the feedback loop. As soon as the

intensity of the pump bearh}, exceeds a certain threshold,

the initially uniform state breaks up: patterns evolve in thewhich connects the phase modulated light fi&lg at the

transverse cross section of the light wave. At the LCLV read-CLV read side with the field,, at the write side. Here\ |

side, these are pure phase patterns, corresponding to intensisythe Laplacian in the transverse coordinates/), L is

patterns at the LCLV write side. the diffraction length in the feedback loog, the amplitude
There is a simple physical picture for this pattern forma-of the plane pump wave ang=2=/\ its longitudinal wave

tion process: theTalbot effect describes the fact that the number.

transverse profile of a spatially periodic wave front reappears The LCLV transforms the write intensity distributidg,
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~|E,J? to a phase distribution via a nonlinear response funcguantitative model of Eqg1) and(2). Up to third order, for
tion S(1,). Since the dynamical response is slow, in particu-the stationary state/gt =0, these equations have the gen-
lar with respect to the light round-trip time, a relaxation termgrg| form

with a time constant has to be added. Moreover, the spatial

resolution of the LCLV is limited, which is considered in a 3 b2 — (1 1 &

diffusionlike behavior with an effective diffusion lengih ab™+ b+ H=(1p =) P, @

All this leads to an equation for the nonlinear phase responsgj, e we consider perfect patterns, spatial derivatives are not

: included here. This equation describes a square-root depen-
Td+1PA, O+ D=5(1,,), (28 dence of the amplitude on the reduced stress pararhgter
— Iy, In the above form, the parametdr<O accounts for a
Kkelwt+1 Sy Vin so-calledimperfectbifurcation, i.e., a smooth onset of the
el 41 V_Vext_ V_H (2b) pattern amplitude. In general, a hexagonal pattern bifurcates
slw 0 0 . . .
subcritically (0<<0), while squares and rolls bifurcate nor-
The LCLV is characterized by the parameters50 ms,| ~ mally with b=0[1]. , _
=30 um, and ®,,=6.027, K,=2.15 cn¥uW, & In Eq. (4), the coefficients, b, andH have the dimension

=131 cnf/uW, Sy/Vy=0.0852, andV,,/V,=0.5521 for of an intensity. In theoretical approaches, where the threshold

the saturation function. These parameters have been detdf- Known, this equation is mostly given in dimensionless

mined in separate measurements. The external ac voltad@™
Vet S€ts the operation point of the device. In principle, Eq.

S(IW)=d>ma{l—tanh?

(1) can be inserted into E@2), leading to a single nonlinear a'd3+b' P>+ H'=(p—1)d, (5
partial differential equation in a scalar real variable o B _ _
D(x,y,t). with the coefficients divided by the threshold intendity,

A linear stability analysis of this model gives the thresh-and a dimensionless stress parametet, /1, .
old of pattern formation. In our case, we find a stationary A nonlinear theory had been performed]itf] for a thin
bifurcation to patternsb(x,y), characterized by a single Slice of a Kerr medium under single optical feedback. While
critical wave numberk.. There are also higher unstable in the Kerr model the induced phase is proportional to inten-
wave numberk‘c"), having higher pump threshol$6]. For sity ®~1, in the present system instead, the nonlinea@jy

the parameters of the following experiment, we find the thelS Saturable. The authors 5] calculated the amplitudes of
oretical threshold at a pump intensity ofl, hexagon and roll solutions. They find hexagons to be the

=48.66 wW/cr? and the modulus of the critical wave num- stable solution, bifurcating subcritically with a rather small
ber to bek,=19.15 1/mm. hysteresis. The unstable rolls bifurcate normally; squares had

There are three prototype solutions of different symme 0t been considered. The coefficients read1s

tries, determined by a single wave numbigr namely, roll,

square, and hexagon patterns. Close to threshold, when re- Rollsa’ =y _ '
sulting harmonics are negligible, these patterns simply read 8 sindy,

as

3 sindy,—sin 3%
2 th th b,zo,

H . ,11sindy,—4 sin 29y, —sin 39y,
N (cos{Znﬂ-/N)) exagons| = x 8 sindy, ’

O=Dy+D cog k. I+ , K =K. oi
0 ngl 5{ n lpn) n c s|r|(2n77/N) o 1—00513”1 3
3 ~ X 2sinog, ©)
with N=1,AZ,3, respectively. The amplitude of these phasevhere 9, is the solution of tady,=d,+o and o
profiles is®, a homogeneous offset is given By, and ¢, =L/(kol 2) measures the relative strength of diffusion. Our
are spatial phase shifts. system is in the limit of weak diffusiomr=28.2>1= 9,

From experiments and numerical simulations we know=1.497. Settingx=—1 for the defocusing nonlinearity of
that in our case, hexagonal arrangements of bright spots atee LCLV, we arrive at
the dominating pattern just above threshold, while the other

solutions are unstable. However, under further increase of Rollsa’=0.4995~1/2, b’'=0,
the pump intensity, even hexagons soon become unstable and
spatiotemporal disorder sets[ib8]. Hence, most of the regu- Hexagons'=1.53~3/2, b’'=-0515~-1/2, (7)

lar pattern solutions are effectively unstable in the largest

part of parameter space. The aim of the control will be towhere the approximative values belong to vanishing diffu-

make these solutions accessible. sion o—<. When comparing this prediction to our experi-
With a perturbation theory, one can go beyond the lineamental and numerical results, we have to keep in mind that

stability analysis and describe the growth of the differentthe Kerr model is only an approximation. The amplitude

regular patterns by so-called amplitude equatighls Such  equations coefficients also depend on the higher order terms

an amplitude equation has not yet been derived for the fulbf the saturable nonlinearity of EQ).
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B. Fourier space control two hexagonal solutions differ only in their phase. For this

The control scheme follows the idea of a negative feed!€ason, the simple Fourier control scheme used here, omit-
back regulator, but here, asignalsare not only time- but ting rotations and phase shifts in the Fourier plng can-
also space-dependent fields. The principle is to derive thBot select between them. Therefore, the unstable honey-
deviation of the actual system state fronaeget statecho- ~ Combs are not observed.
sen beforehand. This deviation is the control signal, which The Fourier space control scheme has been proposed and
has to be coupled back into the system with a negative sigriested numerically ifi7]. Simplified versions of this scheme
Such, all nontarget state contributions are discouraged arfihve been implemented experimentally in different nonlinear
the system should move towards the target state. If the targeptical systems. Here, an extra control loop has been omitted
state belongs to the set of solutions, the control signal wilby introducing the Fourier filter directly into the system
naturally vanish asymptotically. In our case, the target statefs,9].
are the above mentioned, spatially periodic patterns, consist-
ing of few spatial Fourier modes.

The terminudeedbackshould not cause confusion at this C. Experimental setup
point, since the underlying system without control has al-

ready been denoted assmngle feedbackThe control loop, i | larized. 100-mW.f doubled
which is introduced here, represents an additional feedbacROUrce, a linearly poiarized, -miv-irequency doubled cw
Nd:YAG (yttrium aluminum garnetlaser is used. The laser

The system state is probed by coupling out a small frac- X :
tion of the light wave. Optical spatial Fourier filters are ide- POWer is controlled by an acousto-optical modulator. The
ally suited to derive the control signal: a mask in the Fouried@Ser beam is cleaned and expanded to about 30 mm diam-
plane between two lenses just blocks all modes of the targdter(lensesL1, L2, pinholeP1) but only the central 8 mm
pattern. The transmitted residue represents the deviatiow® used. The optical power of the beam entering the setup is
from the target state, being fed back into the system. Sinc&onitored by the photodiode PD1.
we consider light waves, an appropriate setting of the rela- The beam is phase modulated and reflected by the LCLV
tive phases allows us to choose negative interference b&ead side and guided back to the write side by several beam
tween the control and the original wave, resulting in the desplitters and mirrors. The modulated wave propagates free

The complete optical setup is shown in Fig. 1. As light

sired negative feedback. over a distance of. =30 cm between the LCLV and the
In the model, the Fourier control can simply be includedapertureP2. From this plane, the wave front is imaged by
by replacing the lensed.3, L4, L5 onto the LCLV write side. A rotatable
_ dove prismD is necessary to correct a slight unwanted beam
En(X.Y)—(1=SF IMPE(XY) (8) b 4 o

rotation, which can occur due to slight misalignments of the
mirrors.

Experimentally, the Fourier control is realized by cou-
pling out a fraction of the wave by the beam splitter BS2.
The 4f arrangement of the lensé¥ and L8 provides a

in Eq. (2). The control strengthO<s<1 determines the
maximum amplitude of the control signak, stands for the
spatial Fourier transform and\ for the Fourier mask.

This mask is transmittant for nontarget modés,: . : ) . .

FLMZFE,=E,, and blocks all target modes,. Conse- Fourier plane, Where_the signal can be flltere_d by_msertmg a
quently, if the system is in the target state, the control signai"@Sk FM. The mask is a plane glass plate with a lithographi-
vanishesMFE,=0. cally structured chromium layer. The design of this Fourier

Note that the control signal is continuously distributed inMask determines the target stafell]. The filtered signal is
space. The typical spatial resolution of an optical Fourierther? reflected by the mirroM4, passing the Fourier filter
filter (=10 um) is even smaller than the diffusion length of adain.
the LCLV (=30 um), which in turn sets the lower bound ~ The beam splitter BS2 and the mirro43, M4 form a
for the length scales of emerging structures. The passaddichelson interferometer. By appropriate setting of the rela-
time of the wave through the control loop is typically sometive phase of the two interferometer arms, destructive inter-
nanoseconds. This is orders of magnitude faster than the tinference is achieved and the control signal is subtracted from
constant of the LCLV ¢~50 ms), determining the time the original signal. The control strengthcan be set by the
scale of the pattern formation dynamics. Consequently, theeflection ratios of the beam splitters BS2 and Bgdllicle),
control is effectively instantaneous. The situation would be-here to s=0.4. The main experimental challenge is to
come more challenging, when the system time constant iachieve an even interference over the whole beam diameter.

comparable to the transit time of the control Id@&3. This requires minimal wave front distortions in the control
We have already shown that the total control power in-loop and good alignment of the optical components.
deed becomes small, when the target state is reach@d It has been demonstrated that the stabilization of different

Moreover, the spatial distribution of the control signal can betarget states is possible in parameter regimes, where they are
recorded by a camera, giving information about what drivesotherwise unstable and experimentally not observable
the system away from the ideal target stdl#|. [7,10,11. Examples of patterns are shown in Fig. 2. In the

It should be noted that, in general, there are two states aincontrolled pattern, we find around 25 spots along the di-
hexagonal symmetry, one with distinct peaks, one with dipsameter of 8 mm of the active area. This agrees very well with
(honeycombs However, the spatial Fourier spectra of thesethe prediction of the linear stability analysis.
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write side for a pump intensity off,=100 uW/cn¥. The uncon- FIG. 3. Experimentally measured relative optical poyegrin

trolled state is almost hexagonalpper panel, Ins Perfect roll, o ¢ritical wave numbetupper curvesand py, in the harmonics
square, and hexagon patterns form under the action of approprlaEfOWer curves

control.

IIl. EXPERIMENTAL BIFURCATION ANALYSIS two reading points weré\l,=—3 uW/cm?. The limited

We will now make use of the control scheme to track theStability of the interferometer required to readjust the phase
different target states in parameter space. This allows us tef the interfering light waves for every reading point.
measure the corresponding amplitudes even in regimes Figure 3 shows the measured optical power in the critical
where these solutions are otherwise unstable. In particulavave numbep.=P./P, relative to the total pump power
we will be able to characterize the bifurcation from the uni- P, in arbitrary units. For comparison, the case of the un-
form to the patterned state. controlled, freely running system is shown as well, which of

The measurements are carried out with decreasing pumgourse does not represent the tracking of a particular system
intensity, starting from large values. The main expectation istate. In the plots, also the relative power in the harmopjcs
that for patterns emerging from a normal bifurcation, thejs shown.
recorded optical power should monotonically approach zero |t was not possible to stabilize the hexagons for pump
at threshold. For hexagons, which bifurcate subcritically, the,g|yes larger than 12QuW/cn?. For larger pump values,
amplitude should, in the case of a perfect bifurcation, insteagy g appeared instead. This can happen for our control
remain finite even below threshold, before suddenly fa”i”gscheme, since the two roll modes are a subset of the six
to zero. Such a hysteresis has previously clearly been dgjayag0n modes. The hexagon-roll transition is also reflected
tected in another optical single-feedback experini@hwith i 5 gistinct dip in the amplitude of the harmonics.
sodium vapor as nonlinear medium. Experimentally, it is not = g4, the square pattern, there is also a change in the solu-
simple to detect the amplitudes of the phase pattémn¥/e  tjon which is more subtle. A closer look at the patterns re-
have instead detected the power spectrum of the light wavgeals that the square patterns are slightly sheared. In the
in the feedback loop. In the Appendix, the relation betweerfFourier plane, this corresponds to the fact that the angles
the phase and intensity amplitudes of the basic Fouriepetween two adjacent modes are not exactly 90°. In the
modes is established, allowing one to reconstruct the pha?é%(periment, we see typically a deviation of up to 5 °. Con-
amplitudes. _ _ sequently, the resulting mixed harmonic as linear combina-

The detection is realized by coupling out part of the feed+jon of the two modes including the smaller angle is larger
back wave with beam splitter BS4. In the focal plane of lensyya, J2k..

L9, a detection mask DM transmits only wave numbers in A simple explanation is that the next unstable wave num-

the annulus 0J&<|k|<1.%.. The photodiode PD2 detects ber k{®~ \/7/3, [15,16 is very close and pulls this mixed
the total light powerP in this wave number band. A second harmonic. As we will see later, the transition between pure
measurement is performed with a detection mask that trangmd sheared squares is observed in the numerical simulations
mits in the range 0l <|k|<2.1k.. The amplitudes in as well. Such sheared squarestwmboidsare also a regular
higher wave numbers are determined by subtraction of botpattern solution, since they contain just discrete modes with
measurements. the critical wave number.

Recording a scan under systematic variation of the pump Experimentally, the evolution of sheared squares cannot
intensity is experimentally rather demanding. After setting abe prevented completely. The spots on the Fourier mask,
certain pump intensity, it is vital that the system comes tdoblocking the target pattern modes, necessarily have to have a
rest and the transients die out. In all cases, starting at higfinite diamete{11]. Since the modes of the sheared and the
values far above the threshold the pump intensity was sysxact square patterns do not differ very much, there is no
tematically decreased. The steps between the acquisition sfrict discrimination between exact and sheared squares. A
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Rolls p Squares The relation between the relative power in the critical
- - wave number and the phase amplituge&®) is derived in
g 4 R - the Appendix. The corresponding EqgA4), (A7), and
g £ - (A11), together with Eq(A14), cannot be inverted analyti-
2 2 2 2 cally, so that we use a numerical interpolation instead. An
e’ e/’ ¥ additional fit parameter is the scalingf, since this power
00 50 100 150 00 50 100 150 had not been determined in absolute values. The result of
6 Hexagons Ideal bifurcations these fits is shown in Fig. 4. From the fitted parameters, we
' can reconstruct the diagram of a perfect bifurcation by set-
= 4 0.6 ting H=0.
5 © 04 The lower limit of the data points included in the fit in-
a2 02 terval is chosen such that too small amplitudes with large
' relative errors are excluded. For the hexagons and the
00 50 100 150 0 60 %0 . squares, the upper bound is given by their range of existence.

In general, the choice of the upper limit has to be a compro-
mise. On one hand, the quadratic approximation Egwill

. . ) . fall for too large pump intensities. On the other hand, close
FIG. 4. Fits of the theoretical curve into the measured reIatlveto threshold the smooth onset of the imperfect bifurcation
power in the critical mode. The data points included in the fit 4o ninates  hiding the original bifurcation characteristics.
are indicated by larger markers. The lower rhs plot shows thel—he coefficients of the amplitude E}), found by the fit are
reconstructed ideal bifurcation diagradr(l,) with H=0 (dashed displayed in Table [20].

line, rolls; dash-dotted line, squares; solid line, hexagons The coefficientsa, b, H, and the thresholty, are given in

. . . - uWi/cr?. These coefficients depend on the chosen pump in-
bend in the amplitude of the harmonics may indicate a trangensity interval and on the fit start parameters, which limits

sition to appear ak,~ 1OQ_MW/Cm2- _ the reliability. However, the found thresholds are always
For h|gh pump_lntensmes, we observe_ a saturat_lon of th&yithin a range of+5 pW/cne.
power in the critical wave number. This saturation goes The thresholds for the different patterns are very close to
along with the growth of the harmonics. The harmonics playeach other and are in the order of the theoretical value of
a particular important role for the stability of the square pat-|,,=48.66 uW/cn?, as predicted by the linear stability
terns. If they are cut off by the spatial low pass filt&s3(  analysis. The threshold is quite sensitive to some of the
P3, L4 in Fig. 1), we observe the square pattern to decay td_.CLV parameters. For instance, a change in the diffusion
the roll solution, which is also compatible with a square tar-lengthl by a few microns already leads to a similar change of
get mask. the threshold. Hence, the dependence on room temperature
An important fact is that instead of a sharp onset of patmay already explain the observed difference between experi-
tern formation, we find that all amplitudes grow smoothly mental and theoretical threshold. A further possible reason
from zero. In particular, the subcritical bifurcation, which for the deviation is discussed in Sec. V. _
was expected for the hexagons is not obvious from the mea- The fit also shows that the hexagon solution indeed bifur-
surement and may be hidden by the smooth onset. This s§at€s subcritically, but with a very small hysteresis, as pre-
called imperfect bifurcationis well known from other sys- dicted by D'Alessandro and Firfi5]. Whereas the roll and
tems, too[1]. It is caused by imperfections, namely, by square patterns are found to bifurcate normally, as expected.

spatial inhomogeneities. A more detailed discussion abouthe coefficientd, describing the imperfect bifurcation, is at
the influence of inhomogeneities will follow in the last sec- Iéast in the same order of magnitude for the three measure-

tion. ments, which is quite reasonable. Due to the dependence on
phase amplitudesb(l ;) from the measured relative optical MY Not be a rigorous proof. However, the fact that all coef-
power p.. We assume that, close to threshold, the phasgments have the correct sign and are close to the expected
Cc* ’ l . . .

amplitude follows the simple, quadratic dependence of th¥/@lues indicates that the experiment and theory agree.
amplitude equatiord). We use the quantitiess b, H, andl ,

as fit parameters of a least squares fit, using a simplex direct
search algorithm provided by the numerical package- For comparison, numerical simulations of the full quanti-
LAB. tative model of Eqs(1) and(2) were carried out. In order to

pump intensity Ip [pW/cmz] pump intensity Ip [p.W/cmz]

IV. NUMERICAL SIMULATIONS

TABLE I. Amplitude equation coefficients, found by a fit of the experimental data. The valuepH,
andly, are given inuW/cn?.

a b lin H a’ b’ H’
Rolls 50.0 —0.0003 63.0 —4.54 0.794 —4.2x10°¢ —0.0720
Squares 50.3 —0.0004 62.4 —-3.20 0.807 -6.4x10°° —0.0674
Hexagons 114.0 —-16.1 58.5 —-1.39 1.95 —0.275 —0.238
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get as close as possible to the ideal bifurcation characteristic,
we here chose periodic boundary conditions and did not in- 4 =
clude possible inhomogeneities. S o’
The model equations are solved in several steps. In one
time step, first, the propagation of the phase modulated pump
wave is solved in Fourier space by multiplication of an ap-
propriate phase factor. The resulting field is then transformed
back to real space, yielding the intensity distribution at the
LCLV write side, from which the nonlinear phase response is
computed. Diffusion is included by multiplication &f to .
the spatial Fourier transform of the observed phase 0 100 200 0 100 200
O (x,y,t+At). It has turned out that a simpler and faster

Squares
C’ @

implicit-explicit scheme led to a small error, resulting in a é,,e: 2
noticeable deviation of the pattern formation threshold. %o’ 1
e

The simulations were run with a square grid with 256
grid points and a pattern aspect ratio of 30. The Fourier 0
control scheme was implemented numerically by attenuating
the nontarget modes of the phase modulated light field by a

factor (1-s). .In general, the pontrol stren91$1=0.4 has FIG. 5. Numerically determined total phase amplitudbs col-
been chosen in accordance with the experimental value. IUmn), and relative optical powefrhs column in the critical wave

the simulations, it was checked for each value of the pump,mper 0.8, <k< 1.2 (large markers and in the higher harmon-
that the control signal decays. The fact that the average phagg 1.x <k (dots.
change between two integration steps falls below a given low
boundary was taken as indication for convergence. From the Pure square patterns are particularly difficult to stabilize.
resulting phase distributions, the different harmonics weréAs in the experiments, there is a strong tendency to form
extracted in Fourier space by summing over all modes withirsheared squares. Depending on the diameter of the spots of
a given annulus. the control mask, shearing is to a certain amount compatible
For roll and square patterns, it is not a problem to choosevith the target state. We have here considered the slightly
the parameters such that the modes of the target pattern esheared squares in order to be in accordance with the experi-
actly match numerical grid points in Fourier space. For hexament. For illustration, the amplitudes of pure squargs (
gons however, this can work only for one of the three modesmarkers, sheared squares havenarkers are shown in Fig.
Hence, the computed pattern can never be exactly hexagonal.as well. Pure squares could only stabilize far from the
The approximation can be the better, the higher the chosethreshold with a larger control strength s 0.6; we were
aspect ratio is. We mention this well-known detail, since itnot able to observe them close to the threshold. It is remark-
follows that in the simulations a number of nearly hexagonakble that pure and sheared squares differ considerably in
patterns coexist, which slightly differ from each other in rela-their phase amplitudé, while the optical powerp, are
tive angle and modulus of the three modes. The crucial poindlmost identical.
is that these coexisting patterns also differ in amplitude. As before, we find a saturation of all amplitudes in the
Therefore, care has to be taken in the choice of the targefritical mode, accompanied by a growth of harmonics. The
pattern modes to match the ideal critical hexagonal pattern @sarmonics are particularly strong in the square patterns,
close as possible. mainly through the contribution of the first mixed harmonics
Figure 5 shows the numerically found phase amplitudes imat k= 2k, . This finding can be explained by the close sec-
the critical wave numbeb.=®(0.8.<k<1.2.), and in  ond unstable wave numbé¢?), promoting this harmonic
the harmonicsb,=®(1.X&.<k). Displayed therein are the moge.
angular sums over the absolute amplitudes of all modes in |n contrast to the experiment, from the simulations we can
these wave number bands. The phase amplitdeles the  access the phase amplitude in absolute values. From there,
critical wave number result from a division by the number ofwe now see that the amplitudes asymptotically approach the
modes. The corresponding relative optical powers, whichmaxima of the theoretical diffraction efficiencies, as derived
have been the experimentally accessible quantity, are alda the Appendix(cf. Fig. 11). This makes sense, as a further
shown in Fig. 5. increase in phase amplitude would lead to a decrease of the
For very high values of the pump, the numerical Fouriercorresponding optical power in the critical mode—which in
control scheme can fail as well. For rolls abovg  turn would have to lead to a decrease in phase amplitude.
~130 pWi/cn?, the control strength had to be increased toThe interesting point is that, even though the calculation in
s=0.6, to prevent a transformation into spot patterns. Morethe Appendix neglects harmonics and higher unstable wave
over, unlike in the experiment we do not observe a transitiomumbers, it seems to hold surprisingly well far above thresh-
from hexagons to rolls for strong pump values. The transitiorold.
can however, be observed numerically, when the boundary is In Fig. 6, the numerical data points close to threshold are
included in the simulation. This highlights the influence of shown together with quadratic fits. The closeup reveals that,
boundaries on the selection of patterns. indeed, hexagons bifurcate subcritically, but with a very

0 100 200 300 0 100 200 300
punp IP [p.W/cmz] pump Ip [pW/cmz]
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0.6 o In the experimental measurement, the range of the exis-
' 0.2 ° tence of the hexagons starts about 1% below threshold with a
<o 04 ol giﬁﬁw finite amplitude of®=0.07. This compares quite well with
0.2 0.1 $$g$$2 the numerical results, namedy=0.11 at 2.5% below thresh-
- ngﬁg old. The agreement of the coefficierdsand b between ex-
0 0 s periment and simulations proves to be satisfactory.
45 50 55 60 45 50 55 60 Finally, the plot in Fig. 6 also illustrates that the phase
2 2 . o . . . .
pump I [pW/cm'] pump [ [pW/em’] amplituded is a better choice as variable for the derivation

of an amplitude equation. In contrast, the more linear depen-
FICE. 6. Left hand panel: numerically determined phase ampli-dence pc(lp) is less well approximated by a square-root
tudes® together with fits+ and - -, rolls; ¢ and -- -, squaresyy function. The relationgA4), (A7), and (A13) already state
and — , hexagons The upper limit of the fit range is indicated by that, close to threshold, a square-root dependenceb of
the vertical line. Right hand panel: corresponding optical powerw\/m corresponds to a linear dependepge- | ,. The abso-
close to threshold. lute optical power would then be an even worse choice, as it

_ rows quadratically with pump intensif.~p.l ,~12.
small hysteresis. The results for the rolls and squares are o a y pump Be=Pelp=l

good agreement with the hypothesis that these solutions de-

velop from a normal bifurcation. V. SPATIAL INHOMOGENEITIES
The fit results in the following coefficients: . . . .
a b a b It is well known that spatial perturbations can cause im-

perfect bifurcations and may lead to a shift of the pattern

Rolls 26.9 -121 0.553 —0.024  formation threshold1]. However, the precise effect of a par-

Squares 35.5 -1.74 0.73 —0.036 ticular spatial perturbation is hard to predict beforehand. In

Hexagons 103.4 -225 2.15 —0.468 our system, we identify three main candidates: inhomogene-
ities of the nonlinearity, speckles and the presence of bound-

Again, the coefficients, b are given inuW/cn?. aries. Numerical simulations allow one to investigate their

respective influence separately. In the following, we will in-

For this fit, the thresholé, has not been varied, since the clude each of the above inhomogeneities in a simulation of
normally bifurcating solutions indeed start at the theoreticathe system under Fourier control with hexagons as target
threshold within the numerical error. Also, the coefficient state. The intention is to qualitatively identify the main cause
H=0 was fixed to be zero, because the simulations do natf the imperfect bifurcations, rather than to exactly repro-
contain imperfections. However, even whip andH are  duce the experimental results, which would include too many
left as free fit parameters, the resulting coefficiemt® do  unknown parameters.
not change significantly anid,, andH are very close to the
expected values. Again, the fit result depends somewhat on
the chosen interval, since the quadratic approximation in Eq.
(4) is valid only close to threshold. Our first assumption was that a slight inhomogeneity in

As in the experimental finding, the hexagonal solutionthe nonlinearity was the reason for the experimentally ob-
bifurcates subcriticallyl§<0), and rolls and squares can be served imperfect bifurcation. The thicknesses of the different
assumed to bifurcate normallyo£0), as predicted by the layers of the LCLV can vary over the active area. In particu-
theory. Actually, the values df are small, but do not really lar, the fabrication of a planar photoconductor layer is diffi-
vanish (and are even larger than those in the experiment cult. The effect is that the nonlinear transfer functtg(,,)
The explanation is that the numerical simulations have noitn Eqg. (2), and, as consequence, also the pattern formation
always reached the perfect stationary state. For practical rethreshold, become space dependent.
sons, our convergence criterium had to be to put a small limit On increasing the pump intensity from below threshold,
for the average phase change in each integration step. Howhe pattern starts to grow locally, where the local threshold is
ever, particularly close to threshold, slowing down phenom-exceeded first. Under further increase of pump power, the
ena can make the corresponding time constants very largeattern fills the active area. This effect is actually observed in
and consequently the changes in each integration step etie experiment, a snapshot of a pattern close to threshold is
tremely small, requiring excessive integration times. In theshown in Fig. 7.
numerical runs, the pump intensity was decreased stepwise Since the pattern amplitude is determined globally,
starting from a large value, so that the computed phase anmamely, as amplitudes of the corresponding modes in the
plitudes are somewhat larger than the ideal asymptotic valFourier plane, the described gradual spreading of the pattern
ues. This results in a corresponding small upward shift of thehould result in a smooth growth of the pattern amplitude
fitted parabola. and thus can be responsible for an imperfect bifurcation.

Within these reservations, the agreement with the predic- The inhomogeneous nonlinearity was included in the nu-
tions of the Kerr mode(7) is relatively good. However, we merical simulations by replacin® ,.—[1+ x(X,¥) P max
find the coefficienta’ for the hexagons to be significantly in Eg. (2). The inhomogeneity is smali(x,y)|<1, with a
larger than that expected in their approximation. vanishing averagéy),,=0. Since we suppose that it has a

A. Inhomogeneous nonlinearity
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- -
2 ©)

/1%
1.5 5%
\Mo%
<e 1
0.5 20%
FIG. 7. Experimental snapshot of a pattern close to threshold, 0
without control. The hexagonal pattern starts to grow locally, where 0.8 1 1.2
the nonlinearity is most sensitive. I /I(l)

th

smooth profile, it is composed of small wave numbers with
random phases. The distributigr{x,y) used in the follow-
ing is shown in Fig. 8.

A number of simulations were run varying the strength of
the inhomogeneity, characterized by its standard deviatio
std(y). As Fig. 8 shows, the inhomogeneity in the nonlinear-

ity indeed causes a local growth of the pattern, corresponqhe control scheme. Consequently, the real inhomogeneity

ing to the experlmenta_l obs_ervatlt_)n. . should be smaller, since this has not been observed experi-
However, the resulting bifurcation diagrams do not show

Ily.
a significant deviation from the perfect bifurcatidfig. 8). mentally
An increase of the strength of the inhomogeneity beyond
std(y) > 0.3 provokes dynamics and disorder and a failure of

FIG. 9. Effect of speckles. Upper panels: far field %&b and
15% above threshol(). Lower graph(c): corresponding bifurca-
tion diagrams; the parameter is the fractioof the optical pump

ower in the speckles. The bold line again is the reference of the
omogeneous case.

B. Speckles

The second possible cause for the imperfect bifurcations
a b) is the scattering in the experimental setup. Small imperfec-
3% tions of the optical components, dust particles, minimal
: scratches, and also thermal fluctuations in the liquid crystal
layer scatter part of the pump beam. This leads to speckles,
i.e., broadband spatial noise. Even though in the experiment
care had been taken to avoid scattering, speckles can never
be disregarded completely.

Numerically, the speckles have been included as steady
state, spatial white noise added to the pump waye
—Ep[1+&(x,y) ], with £ being complex. The phase and am-
plitude of this noise has been chosen such that a given frac-
tion f of the total pump power is carried in nonzero Fourier

modes ak#0.
In the simulations one can clearly observe, how, close to
threshold, the system amplifies those noise contributions,

N
. 5o
'

0 which are near unstable wave numbers. Around threshold,
0 the critical circles are broadly excited. Further above the
1 11 12 threshold, this broad excitation collapses to the six hexagon
I /Ig) target modesFig. 9).
P

The resulting bifurcation diagrams are shown in the lower

FIG. 8. Inhomogeneous nonlinearity: the upper left paas! panel of Fig. 9 with the noise amplitudeas paramete_r. Al-
shows the distribution of the inhomogeneity(x,y) used in the re_ady a_small amount of spe_ckles clearly causes an imperfect
simulations. In the upper right pan), a typical resulting pattern _blfurcat|on and Igads to a shift of the threshold. Note that, for
under Fourier control close to threshold is presented. The resultinfStance, a fraction of =5% corresponds to a very small
bifurcation diagram is shown in the lower pariel. The parameter ~ SPeckle intensity. The grid point representing the zero order
is the strength stcl) = 0.1 (solid), =0.2 (dashed, and=0.3 (dash ~mode in the Fourier plane carries a fraction—(fl) =0.95,
dotted of the inhomogeneity. The bold line gives the reference forwhereas each of the remaining=(256—1) grid points
the homogeneous case. carries in average a fraction of onfyN<10® of the pump

066206-9



R. NEUBECKER AND E. BENKLER PHYSICAL REVIEW BE55 066206
power. However, close to threshold, noise near the critical b)
wave numbers is substantially amplified.

This amplified noise contributes to the pattern modes,
leading to a nonzero pattern amplitude already below thresh-
old and thus causing an imperfect bifurcation. Moreover, the
inhomogeneous pump profile induces a noisy phase profile,
which again scatters part of the pump wave into random
modes. This effectively wastes pump power and therefore
leads to an increase of the pattern threshold.

d)

14
12
10

C. Boundary

Finally, we consider the boundary of the active area, " %
which—at least in the experiment—represents an unavoid-
able spatial inhomogeneity. Boundaries are also known to 2
induce imperfect bifurcations and to shift threshqtt]. 15
However, for the given aspect ratio of larger than 25, we had
expected that the influence of the boundary would be small.
Experimentally, the boundary is determined by the circular 0.5
apertureP2 (cf. Fig. 1). This aperture is located in a plane 0
which—due to the imaging by the lenses—is equivalent to 1 L1 1.2
the LCLV write side. Consequently, the write intensity is /1
forced to vanish outside the diameter of the aperture.

This kind of boundary has also been included in a numeri- FIG. 10. Effect of a circular boundary. Upper panels: patterns
cal simulation. To be even more realistic, the shape of th€-05% below thresholda) and 23% above threshol). Linear
pump beam has been considered in an additional simulatio§Uts through the images),(d) demonstrate the decay of the pattern
While in the other simulations, the pump beam is assumed tBMPplitude near the boundary. Lower gra(ef corresponding bifur-
be a plane wave, in the experimental reality it is an expandegation diagram withoutsolid line) and with (dash-dotted lingin-
Gaussian beam with a diameter of around 3 cm. Hencec,lusmn of the Gaussian pump profile. The bold line again is the
across the diameter of the aperture, the variation in the pumf§ erence of the homogeneous case.
intensity is in fact small.

These simulations reveal that the influence of the boundstill positively contribute to the pattern formation process.
ary is indeed quite strong. The fact that the pump beam is ndtrom our simulations we find that the corresponding increase
exactly a plane wave also does have an effect, but much le$s the observed threshold is less than 5%.
than the mere presence of the boundary. The reason for the With respect to the different shifts in the threshold, the
strong influence of the boundary is visualized by linear cutsgjiscrepancy between the theoretical and experimentally ob-

through the pattern, as shown in Fig. 10. The pattern starts t9erved thresholds is, in fact, smaller than it seemed at first
grow in the center, its amplitude significantly decays towardsjgp,

the boundary.

€)

The reason becomes clearer in a simple picture, when we VI. CONCLUSION
remember the role of the Talbot effect in the pattern forma-
tion process: Due to this long-ranggiffractiona) coupling, We have demonstrated that the Fourier space control

each individual bright spot is supported by the presence ofcheme is a valuable tool to access unstable regular solutions
(regularly arrangedspots in the neighborhood. These sur-in spontaneous pattern formation. The properties of Fourier
rounding spots are missing at the boundary. optics and the superposition principal of light waves make
The spatial range of this effect is rather large. Only withoptical systems excellently suited for an implementation of
increasing pump intensity, the spots more and more gain this scheme. In contrast to a number of previous approaches,
similar amplitude. The fact that the pattern does not have ¢he control is spatially continuous and not restricted to a few
uniform amplitude explains the smooth onset, i.e., the imperlocal sites.
fect bifurcation. By stabilizing and tracking the generic, regular pattern
The Fourier control, applied in all of the above cases, carsolutions under variation of the stress parameter, an experi-
lead to an additional shift of the observed threshold. Theamental bifurcation diagram was determined in an optical
boundary introduces a large space scale and hence leads tgiagle-feedback system. The observed bifurcations are im-
broadening of all modefgl0,11]. Depending on the size of perfect, which at first sight hides the behavior close to
the spots on the Fourier mask, which block the target modeshreshold. However, by fitting the theoretical dependence, as
outer parts of these broadened modes are suppressed. In pgiven by a prototype amplitude equation, it was possible to
ticular, this concerns the zero mode, reducing the effectiveetrieve the bifurcation characteristics. The application of the
pump power. However, this effect is hard to estimate since iEourier space control also allowed us to go far above the
is not obvious to which extent modes can be broadened antireshold, where a saturation of the pattern amplitudes was
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observed, accompanied by the growth of harmonics and We start with the simplest case of a roll patterN (
higher wave numbers. , =1): ®N=d"cosk,r). In this case, the spatial phage
For comparison, numerical simulations of the full model .3 pe omitted, since it just represents a spatial shift in the
were carried out. The experimental thresholds are in goofl|aner=(x,y) and corresponds to the choice of the origin.
agreement as well with the simulations as with the lineay,e now have to determine the Fourier spectrum of a wave
stability analysis of the model. Both numerics and experl-E:Ep exp(—i®) with the above phase distribution. The field

ment show that the hexagons bifurcate subcritically, but with.5, pe rewritten aéNeumani series over Bessel functions
a small hysteresis, as predicted by amplitude equations for & he first kind

simpler model. The fitted coefficients of the amplitude equa-

tion are in reasonable agreement between experiment and E(r)=Ep exp[—iqB(') cogk,r)]
numerics.
More detailed simulations revealed that the boundary and * R .
also the presence of speckles, experimentally caused by scat- =E, E (—i)"exp(ink,r)J, (). (A2)
n=—o

tering in the setup, cause an imperfect bifurcation. Both

mechanisms are also observed to cause an increase in the , . ..
pattern formation threshold. In contrast to a first assumption, Clearly, there are only discrete Fourier modekatnk,
the role of inhomogeneities in the nonlinearity itself is obvi- With relative amplitudes of

ously very small. The influence of the boundary and scatter- VB i

ing is much stronger than expected in the first place. Even = EY(k=nky) =(—=i)" (&)(r)) (A3)
weak broadband spatial noise in the form of speckles has a n Ep n '
considerable effect. From our findings we conclude that an

experimental determination of the perfect bifurcation dia-In the context of diffraction at phase gratings,is the dif-

gram would demand extreme aspect ratios and the absencefedction efficiency
any sources of spatial noise. The intensity in the first order is proportional to the modu-

lus square of the field amplitude,
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APPENDIX: PHASE AND INTENSITY AMPLITUDES i ~ a
= (=)™ N (D)3, (D), (AB)

In the following, we will establish the relation between
spatially periodic phase distributions and the correspondindhis leads to a relative intensity in a first order mode
power spectra. This gives the connection between the ampld{m/=1, n=0 orm=0, |n|=1) of
tude of the spontaneously formed phase patterns and the

spectral intensity distribution. This problem is equivalent to 912 EG)Z S 92 E ON
the derivation of diffraction efficiencies of two-dimensional |717[%= IE,|2 =Jo(®™) I (P™)~ 4 (A7)
phase gratings, a typical problem in Fourier opfi2]. P
We will consider the three prototypes of periodic phase The case of the hexagonal phase distribution
distributions, determined by a single wave number,
namely roll, square, and hexagon profiles, <I>(h):ci>(h)[cos(lzlf+ Ur1) + COL Kol + i) + COF Kaf + lﬁ(a)%)
A
N cog2nw/N)
@:‘Dn}::l cosknr +¢n),  Kn=Kc| sin(2nm/N) with k;+K,+ks=0 is much less straightforward. First, we
cannot omit the phaseg, here, since we have only two
(A1) degrees of freedom in the choice of the coordinate origin. In
. practice, there are only two cases of interest which are char-
with N=1,2,3 respectively, and a phase amplitdele acterized by maximal peak-to-peak phase amplitudes,
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3 07 . . . :
. . . — — Rolls - T~
Z ¥,=0: positive hexagons with phase peaks, or 06k -~ - Squares , - ~
n=1 *®| ——— Hexagons , A

3
2 Y= negative hexagons
n=1

relative power P,

with phase dips(honeycombs

We can retain a single phase=,=0, or = 7/3, respec-
tively.

The second problem arises from the fact that the three
modes are not independent. This becomes clear in the expan-
sion of the field

FIG. 11. Optical powep,, relative to the incident power, in the
first diffraction order of periodic phase distributions with roll,
square, and hexagonal symmetry.

EM=E exq —i®Mcogk;r)]exq —i®McogK,r)]

x exf —idMcogkyr)] AP =d ™3 —i32(pM)3,(HM)

—E —j)l+mtng (i)(r) J (i)(r) o R
o, (DT (D) 30(B0) O (CLmmgm)
m=1
X Jn(P)exd i (1Ky+miky+nks)r]

 exgi(1+m+n) ], (A9) X[Im_o(PM) =3 (@M. (AL2)

ﬁ‘]%ae'g’o\?'eeggg ggcéitje gr?u;r?rin?gggséekiuéfnogvsé?;earlpnp;;The resulting relative intensities in the first order are identi-
AR, pel N N P Cal for positive and negative hexagons and can be approxi-

combinationsK,,= Ik +mk,+ nks. mated by

We will focus on the first order modes, where the linear
combinations result in one of the constituent modf@]%
= |21. This mode results from all wave vector combinations
which fulfill m=n=1-1. Inserting this condition into Eq. Ci)(h)2< M2

1_

| 7|2~ 34 DM) 32(DM) + I3 D) 34 (D)
2

(A9), we get ~ (A13)

4 4

(h)zw

71 E For the total power in the first ordét,=P(|k|=k.), we

P have to consider the number of modés

= 2 (—i )_m+1Jﬁ1(&)(h))Jm+1((i)(h))ei(3m+1),/,_

p =E=2N| |2 (A14)
(AlO) C Pp 771

The expression can be rearranged for positive hexaggns (here scaled by the total optical powBy, of the incident

=0) to wave. These relative powepi(&)) are plotted in Fig. 11.
All curves have distinct maxima located at

7= =135 M) 3y(BM) ) )
p(P=1.83=0.677, p®(®=1.07=0.460,

oo

e GO0, (B0) -3, a ()] A

(Al11)
The above calculations are based on the assumption in Eq.
and for negative hexagong € 7/3) to (A1) that the phase distributio® (r) contains only a single
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wave numbetk,|=k.. In so far, the results are applicable to Of the basic modes considered so far, they would just de-
the spontaneously formed patterns until higher harmonic§rease the available total intensity by diffracting it into other
start to contribute significantly. The effects of higher har-orders. The interaction between harmonic and basic modes

monics are not simple to estimate. If they were independentan, however, lead to energy transfer in both directions.
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