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Empirical bifurcation analysis of optical pattern formation
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~Received 12 September 2001; published 18 June 2002!

The experimental characterization of pattern forming bifurcations is difficult, since the unstable solutions are
generally not accessible in experiments. In nonlinear optics, a novel control scheme allows one to select and
stabilize generic patterns and thus to track these solutions in parameter space. This Fourier space scheme is
applied to a single-feedback system and the amplitudes of roll, square and hexagon patterns are determined
experimentally. Even though the bifurcation is imperfect, the coefficients of a prototype amplitude equation are
recovered. The coefficients show satisfactory agreement with theory and with numerical simulations, which are
performed for comparison. The simulations also clarify the origin of the imperfect bifurcation in the experi-
ment: boundaries and speckles appear to have an unexpected strong influence.
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I. INTRODUCTION

The spontaneous formation of spatial patterns is inve
gated in many fields of physics, and other disciplines such
chemistry and biology@1#. Nonlinear optical systems exhib
a wide variety of such self-organization effects as we
which in this area have been examined systematically in
last decade@2#. Though optical systems are very differe
from the classical pattern forming systems regarding th
microscopic physics, the macroscopic phenomena are
prisingly similar.

One of the main aspects in pattern formation is the an
sis of the first bifurcation, where out of the uniform state
number of new stable and also unstable solutions evolve.
investigation of this bifurcation is, in general, limited to th
oretical approaches. Experimentally, only stable solutions
observable, hiding possible coexisting unstable states. In
der to access unstable states, one has to apply a kin
control. This control must on one hand allow one to sel
particular states out of the set of coexisting solutions. On
other hand, the selected state must be stabilized, in case
unstable. Such a scheme should, of course, not alter the
tem properties—apart from the stability of the solutions.

With the success of the concepts to control tempo
chaos, there have been attempts to extend this idea to
tially extended systems@3–6#. A first simple step was to
consider coupled maps or networks of nonlinear oscillato
For continuous systems, often, the control has been app
in a global, spatially uniform way or by modulation of
single parameter. More elaborate schemes consider a
control at a finite number of control sites in space. The
derlying general problem, in particular for experiments,
that one needs to manipulate physical quantities in time
space. This task is difficult if the corresponding quantit
are, for instance, heat, concentration of chemical reactant
flow fields. Furthermore, the spatially distributed control s
nal must be derived in time, which depending on the relev
time constants can be difficult. As a consequence, the ma
ity of the work published so far considers theoretical aspe
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and numerical simulations. Experiments on continuous s
tems are often restricted to a single spatial dimension. In
report, we will present experimental control on a tw
dimensional system. The control signal is not only deriv
from the full spatial distribution of the system state, but its
is also spatially continuous. Moreover, the control works
real time.

Optics opens new access to the control of extended
tems, offering a number of advantages. The possibility
superpose light waves makes it easy to inject external, s
tially and temporally modulated~control! signals into a given
system. Furthermore, the spatial Fourier transformation
pabilities of simple lenses can allow a high-speed derivat
of the spatial control signal distribution. Some of the adva
tages of optics can be made use of in other systems,
when the nonlinear process is photosensitive@4#.

To clarify the notation, we would like to stress that we u
the terminuscontrol for schemes where the intention is
stabilize unstable system states of the unaffected system~tar-
get states!. In particular, the applied control signal should b
derived from the system state and the control signal sho
vanish, when the target state is reached. This is in contra
forced systems, where an external, independent signa
applied—an approach that alters the systems states.

Here, we will make use of a Fourier space cont
scheme, by which we stabilize different stationary, spatia
periodic patterns@7–11#. This scheme makes use of the fa
that the spontaneous patterns, which evolve above thresh
consist of a few discrete Fourier modes. In the following,
use the Fourier control as a tool to investigate unstable
terns, which are not accessible otherwise. In particular,
pattern amplitudes are measured, giving an empirical bi
cation diagram. From this diagram, the coefficients of
appropriate prototype amplitude equation are derived
comparable experimental determination of amplitude eq
tions coefficients has recently been performed for a spati
one-dimensional, fluid-dynamical system@5#.

In the remainder of this paper we will first briefly revie
the nonlinear optical system together with the implemen
tion of the Fourier space control scheme. Section III d
scribes how individual pattern solutions are selected
tracked in parameter space to determine an experimenta
©2002 The American Physical Society06-1



d

e is
r

R. NEUBECKER AND E. BENKLER PHYSICAL REVIEW E65 066206
FIG. 1. Schematic drawing of the setup. LCLV, liquid crystal light valve; BS, beam splitters;M, mirrors;L, lenses. The phase modulate
beam, as reflected by the LCLV read side~lhs of LCLV! propagates to the LCLV write side~rhs of LCLV!. The control loop is indicated by
a gray box. It contains the spatial Fourier filter set up by the lensesL7, L8 and the mask FM. The appropriate phase of the control wav
set by a Babinet-Soleil phase shifter PS. The control can be deactivated by closing shutterS. The optical power in the critical wave numbe
kc , as selected with the lensesL9, L10 and the detection mask DM, is measured with the detector PD2. The optical near field~in a plane
corresponding to the LCLV write side! and the far field are detected by video cameras~CCD1, CCD2!. The control signal is monitored by
a camera~CCD3!, alternatively by a photodetector.
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furcation diagram. In Sec. IV, the corresponding results
numerical simulations are presented and are compared t
experimental findings. In Sec. V, we investigate the differ
possible causes, which lead to an imperfect bifurcation.
relation between the phase and intensity amplitudes is es
lished in the Appendix. The phase is the variable used in
model, while the intensity is the experimental observable

II. INTRODUCTION TO THE SYSTEM

A. The nonlinear optical system

The optical nonlinearity is provided by a so-calledliquid
crystal light valve~LCLV !, acting as saturable defocusin
Kerr-type nonlinearity. The LCLV is a multilayer structur
with a read side~liquid crystal layer! and an intensity sensi
tive write side~photoconductor!. The two layers are sepa
rated by a dielectric mirror and sandwiched by transpar
electrodes to which an ac voltage is applied. According to
local illumination of the photoconductor, the liquid cryst
layer locally changes its refractive index@12#. A uniform
pump laser beam, reflected by the LCLV read side, acqu
a transverse phase shift distributionF(x,y), which is deter-
mined by the intensity profileI w(x,y), incident at the LCLV
write side.

In our setup, the phase modulated pump beam is fed b
to the write side~see Fig. 1!. During propagation through th
feedback loop, spatial phase variations are transformed
intensity modulations by means of diffraction. The LCL
then transforms this intensity modulation back to a ph
modulation, such closing the feedback loop. As soon as
intensity of the pump beamI p exceeds a certain threshol
the initially uniform state breaks up: patterns evolve in t
transverse cross section of the light wave. At the LCLV re
side, these are pure phase patterns, corresponding to inte
patterns at the LCLV write side.

There is a simple physical picture for this pattern form
tion process: theTalbot effect describes the fact that th
transverse profile of a spatially periodic wave front reappe
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after a certain propagation length@13#. A periodic phase pro-
file is transferred into an intensity profile of the same sha
after a certain fraction of this so-calledTalbot length, which
depends on the light wavelength and the spatial periodi
of the profile. The spontaneous pattern now selects its o
wave number such that, after propagation over the gi
length in the setup, the resulting intensity profile at the LC
write side has maximum contrast. Since the Talbot eff
originates from diffraction, there is a long range spatial co
pling throughout the pattern.

The setup is calledsingle feedback, since the modulated
wave is fed back to the optical nonlinearity only once,
contrast to resonators with multiple passages of the li
wave. Such single-feedback systems recently became q
popular@14–16#, because they have a number of advantag
e.g., the clear separation of the two main ingredients
spatial instabilities: diffractional spatial coupling and th
nonlinearity. The use of LCLVs as optical nonlinearity h
proven to offer great experimental flexibility in variou
implementations@17#. In particular, it is possible to realize
large aspect-ratio patterns even with low laser powers.

The theoretical model for the system used here is co
posed of two parts: the propagation of the light wave in
feedback loop and the nonlinear response of the LCLV. Fr
the paraxial wave equation, we can derive a formal solut

Ew5expS 2 i
L

2k0
D'DEm5expS 2 i

L

2k0
D'D

3@exp~2 iF! Ep#, ~1!

which connects the phase modulated light fieldEm at the
LCLV read side with the fieldEw at the write side. Here,D'

is the Laplacian in the transverse coordinates (x,y), L is
the diffraction length in the feedback loop,Ep the amplitude
of the plane pump wave andk052p/l its longitudinal wave
number.

The LCLV transforms the write intensity distributionI w
6-2
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;uEwu2 to a phase distribution via a nonlinear response fu
tion S(I w). Since the dynamical response is slow, in partic
lar with respect to the light round-trip time, a relaxation te
with a time constantt has to be added. Moreover, the spat
resolution of the LCLV is limited, which is considered in
diffusionlike behavior with an effective diffusion lengthl.
All this leads to an equation for the nonlinear phase respo

tḞ1 l 2D'F1F5S~ I w!, ~2a!

S~ I w!5FmaxF12tanh2S k r I w11

ksI w11

S0

V0
Vext2

Vth

V0
D G . ~2b!

The LCLV is characterized by the parameterst'50 ms, l
530 mm, and Fmax56.02p, k r52.15 cm2/mW, ks
51.31 cm2/mW, S0 /V050.0852, andVth /V050.5521 for
the saturation function. These parameters have been d
mined in separate measurements. The external ac vo
Vext sets the operation point of the device. In principle, E
~1! can be inserted into Eq.~2!, leading to a single nonlinea
partial differential equation in a scalar real variab
F(x,y,t).

A linear stability analysis of this model gives the thres
old of pattern formation. In our case, we find a stationa
bifurcation to patternsF(x,y), characterized by a singl
critical wave numberkc . There are also higher unstab
wave numberskc

(n) , having higher pump thresholds@16#. For
the parameters of the following experiment, we find the t
oretical threshold at a pump intensity ofI th
548.66 mW/cm2 and the modulus of the critical wave num
ber to bekc519.15 1/mm.

There are three prototype solutions of different symm
tries, determined by a single wave numberkc , namely, roll,
square, and hexagon patterns. Close to threshold, whe
sulting harmonics are negligible, these patterns simply r
as

F5F01F̂(
n51

N

cos~kWnrW1cn!, kWn5kcS cos~2np/N!

sin~2np/N! D ,

~3!

with N51,2,3, respectively. The amplitude of these pha

profiles isF̂, a homogeneous offset is given byF0, andcn
are spatial phase shifts.

From experiments and numerical simulations we kn
that in our case, hexagonal arrangements of bright spots
the dominating pattern just above threshold, while the ot
solutions are unstable. However, under further increase
the pump intensity, even hexagons soon become unstable
spatiotemporal disorder sets in@18#. Hence, most of the regu
lar pattern solutions are effectively unstable in the larg
part of parameter space. The aim of the control will be
make these solutions accessible.

With a perturbation theory, one can go beyond the lin
stability analysis and describe the growth of the differe
regular patterns by so-called amplitude equations@1#. Such
an amplitude equation has not yet been derived for the
06620
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quantitative model of Eqs.~1! and~2!. Up to third order, for

the stationary state]/]t F̂50, these equations have the ge
eral form

aF̂31bF̂21H5~ I p2I th!F̂. ~4!

Since we consider perfect patterns, spatial derivatives are
included here. This equation describes a square-root de
dence of the amplitude on the reduced stress parameteI p
2I th . In the above form, the parameterH,0 accounts for a
so-calledimperfectbifurcation, i.e., a smooth onset of th
pattern amplitude. In general, a hexagonal pattern bifurc
subcritically (b,0), while squares and rolls bifurcate no
mally with b50 @1#.

In Eq. ~4!, the coefficientsa, b, andH have the dimension
of an intensity. In theoretical approaches, where the thresh
is known, this equation is mostly given in dimensionle
form

a8F̂31b8F̂21H85~p21!F̂, ~5!

with the coefficients divided by the threshold intensityI th ,
and a dimensionless stress parameterp5I p /I th .

A nonlinear theory had been performed in@15# for a thin
slice of a Kerr medium under single optical feedback. Wh
in the Kerr model the induced phase is proportional to int
sity F;I , in the present system instead, the nonlinearity~2!
is saturable. The authors of@15# calculated the amplitudes o
hexagon and roll solutions. They find hexagons to be
stable solution, bifurcating subcritically with a rather sm
hysteresis. The unstable rolls bifurcate normally; squares
not been considered. The coefficients read as@19#

Rolls a85x2
3 sinq th2sin 3q th

8 sinq th
, b850,

Hexagonsa85x2
11 sinq th24 sin 2q th2sin 3q th

8 sinq th
,

b852x
12cosq th

2 sinq th
, ~6!

where q th is the solution of tanq th5q th1s and s
5L/(k0l 2) measures the relative strength of diffusion. O
system is in the limit of weak diffusions528.2@1⇒q th
51.49p. Settingx521 for the defocusing nonlinearity o
the LCLV, we arrive at

Rolls a850.4995'1/2, b850,

Hexagonsa851.53'3/2, b8520.515'21/2, ~7!

where the approximative values belong to vanishing dif
sion s→`. When comparing this prediction to our exper
mental and numerical results, we have to keep in mind t
the Kerr model is only an approximation. The amplitu
equations coefficients also depend on the higher order te
of the saturable nonlinearity of Eq.~2!.
6-3
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B. Fourier space control

The control scheme follows the idea of a negative fe
back regulator, but here, allsignalsare not only time- but
also space-dependent fields. The principle is to derive
deviation of the actual system state from atarget state, cho-
sen beforehand. This deviation is the control signal, wh
has to be coupled back into the system with a negative s
Such, all nontarget state contributions are discouraged
the system should move towards the target state. If the ta
state belongs to the set of solutions, the control signal
naturally vanish asymptotically. In our case, the target sta
are the above mentioned, spatially periodic patterns, con
ing of few spatial Fourier modes.

The terminusfeedbackshould not cause confusion at th
point, since the underlying system without control has
ready been denoted as asingle feedback. The control loop,
which is introduced here, represents an additional feedb

The system state is probed by coupling out a small fr
tion of the light wave. Optical spatial Fourier filters are id
ally suited to derive the control signal: a mask in the Four
plane between two lenses just blocks all modes of the ta
pattern. The transmitted residue represents the devia
from the target state, being fed back into the system. S
we consider light waves, an appropriate setting of the re
tive phases allows us to choose negative interference
tween the control and the original wave, resulting in the
sired negative feedback.

In the model, the Fourier control can simply be includ
by replacing

Ew~x,y!→~12sF 21MF!Ew~x,y! ~8!

in Eq. ~2!. The control strength0<s<1 determines the
maximum amplitude of the control signal,F stands for the
spatial Fourier transform andM for the Fourier mask.
This mask is transmittant for nontarget modesEnt :
F 21MFEnt5Ent and blocks all target modesEt . Conse-
quently, if the system is in the target state, the control sig
vanishesMFEt50.

Note that the control signal is continuously distributed
space. The typical spatial resolution of an optical Four
filter ('10 mm) is even smaller than the diffusion length
the LCLV (l 530 mm), which in turn sets the lower boun
for the length scales of emerging structures. The pass
time of the wave through the control loop is typically som
nanoseconds. This is orders of magnitude faster than the
constant of the LCLV (t'50 ms), determining the time
scale of the pattern formation dynamics. Consequently,
control is effectively instantaneous. The situation would b
come more challenging, when the system time constan
comparable to the transit time of the control loop@6#.

We have already shown that the total control power
deed becomes small, when the target state is reached@10#.
Moreover, the spatial distribution of the control signal can
recorded by a camera, giving information about what driv
the system away from the ideal target state@11#.

It should be noted that, in general, there are two state
hexagonal symmetry, one with distinct peaks, one with d
~honeycombs!. However, the spatial Fourier spectra of the
06620
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two hexagonal solutions differ only in their phase. For th
reason, the simple Fourier control scheme used here, o
ting rotations and phase shifts in the Fourier plane@7#, can-
not select between them. Therefore, the unstable hon
combs are not observed.

The Fourier space control scheme has been proposed
tested numerically in@7#. Simplified versions of this schem
have been implemented experimentally in different nonlin
optical systems. Here, an extra control loop has been om
by introducing the Fourier filter directly into the syste
@8,9#.

C. Experimental setup

The complete optical setup is shown in Fig. 1. As lig
source, a linearly polarized, 100-mW-frequency doubled
Nd:YAG ~yttrium aluminum garnet! laser is used. The lase
power is controlled by an acousto-optical modulator. T
laser beam is cleaned and expanded to about 30 mm d
eter ~lensesL1, L2, pinholeP1) but only the central 8 mm
are used. The optical power of the beam entering the setu
monitored by the photodiode PD1.

The beam is phase modulated and reflected by the LC
read side and guided back to the write side by several b
splitters and mirrors. The modulated wave propagates
over a distance ofL530 cm between the LCLV and th
apertureP2. From this plane, the wave front is imaged b
the lensesL3, L4, L5 onto the LCLV write side. A rotatable
dove prismD is necessary to correct a slight unwanted be
rotation, which can occur due to slight misalignments of t
mirrors.

Experimentally, the Fourier control is realized by co
pling out a fraction of the wave by the beam splitter BS
The 4f arrangement of the lensesL7 and L8 provides a
Fourier plane, where the signal can be filtered by insertin
mask FM. The mask is a plane glass plate with a lithograp
cally structured chromium layer. The design of this Four
mask determines the target state@7,11#. The filtered signal is
then reflected by the mirrorM4, passing the Fourier filte
again.

The beam splitter BS2 and the mirrorsM3, M4 form a
Michelson interferometer. By appropriate setting of the re
tive phase of the two interferometer arms, destructive in
ference is achieved and the control signal is subtracted f
the original signal. The control strengths can be set by the
reflection ratios of the beam splitters BS2 and BS4~pellicle!,
here to s50.4. The main experimental challenge is
achieve an even interference over the whole beam diam
This requires minimal wave front distortions in the contr
loop and good alignment of the optical components.

It has been demonstrated that the stabilization of differ
target states is possible in parameter regimes, where the
otherwise unstable and experimentally not observa
@7,10,11#. Examples of patterns are shown in Fig. 2. In t
uncontrolled pattern, we find around 25 spots along the
ameter of 8 mm of the active area. This agrees very well w
the prediction of the linear stability analysis.
6-4
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III. EXPERIMENTAL BIFURCATION ANALYSIS

We will now make use of the control scheme to track t
different target states in parameter space. This allows u
measure the corresponding amplitudes even in regi
where these solutions are otherwise unstable. In partic
we will be able to characterize the bifurcation from the u
form to the patterned state.

The measurements are carried out with decreasing p
intensity, starting from large values. The main expectation
that for patterns emerging from a normal bifurcation, t
recorded optical power should monotonically approach z
at threshold. For hexagons, which bifurcate subcritically,
amplitude should, in the case of a perfect bifurcation, inst
remain finite even below threshold, before suddenly fall
to zero. Such a hysteresis has previously clearly been
tected in another optical single-feedback experiment@9# with
sodium vapor as nonlinear medium. Experimentally, it is
simple to detect the amplitudes of the phase patternsF̂. We
have instead detected the power spectrum of the light w
in the feedback loop. In the Appendix, the relation betwe
the phase and intensity amplitudes of the basic Fou
modes is established, allowing one to reconstruct the ph
amplitudes.

The detection is realized by coupling out part of the fee
back wave with beam splitter BS4. In the focal plane of le
L9, a detection mask DM transmits only wave numbers
the annulus 0.5kc,ukW u,1.2kc . The photodiode PD2 detect
the total light powerPc in this wave number band. A secon
measurement is performed with a detection mask that tr
mits in the range 0.5kc,ukW u,2.1kc . The amplitudes in
higher wave numbers are determined by subtraction of b
measurements.

Recording a scan under systematic variation of the pu
intensity is experimentally rather demanding. After setting
certain pump intensity, it is vital that the system comes
rest and the transients die out. In all cases, starting at
values far above the threshold the pump intensity was
tematically decreased. The steps between the acquisitio

FIG. 2. Typical intensity distributions observed at the LCL
write side for a pump intensity ofI p5100 mW/cm2. The uncon-
trolled state is almost hexagonal~upper panel, lhs!. Perfect roll,
square, and hexagon patterns form under the action of approp
control.
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two reading points wereDI p523 mW/cm2. The limited
stability of the interferometer required to readjust the ph
of the interfering light waves for every reading point.

Figure 3 shows the measured optical power in the criti
wave numberpc5Pc /Pp , relative to the total pump powe
Pp , in arbitrary units. For comparison, the case of the u
controlled, freely running system is shown as well, which
course does not represent the tracking of a particular sys
state. In the plots, also the relative power in the harmonicsph

is shown.
It was not possible to stabilize the hexagons for pu

values larger than 120mW/cm2. For larger pump values
rolls appeared instead. This can happen for our con
scheme, since the two roll modes are a subset of the
hexagon modes. The hexagon-roll transition is also reflec
in a distinct dip in the amplitude of the harmonics.

For the square pattern, there is also a change in the s
tion which is more subtle. A closer look at the patterns
veals that the square patterns are slightly sheared. In
Fourier plane, this corresponds to the fact that the ang
between two adjacent modes are not exactly 90 °. In
experiment, we see typically a deviation of up to 5 °. Co
sequently, the resulting mixed harmonic as linear combi
tion of the two modes including the smaller angle is larg
thanA2kc .

A simple explanation is that the next unstable wave nu
ber kc

(2)'A7/3kc @15,16# is very close and pulls this mixed
harmonic. As we will see later, the transition between p
and sheared squares is observed in the numerical simula
as well. Such sheared squares orrhomboidsare also a regular
pattern solution, since they contain just discrete modes w
the critical wave number.

Experimentally, the evolution of sheared squares can
be prevented completely. The spots on the Fourier ma
blocking the target pattern modes, necessarily have to ha
finite diameter@11#. Since the modes of the sheared and
exact square patterns do not differ very much, there is
strict discrimination between exact and sheared square

ate

FIG. 3. Experimentally measured relative optical powerpc in
the critical wave number~upper curves! and ph in the harmonics
~lower curves!.
6-5
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R. NEUBECKER AND E. BENKLER PHYSICAL REVIEW E65 066206
bend in the amplitude of the harmonics may indicate a tr
sition to appear atI p'100 mW/cm2.

For high pump intensities, we observe a saturation of
power in the critical wave number. This saturation go
along with the growth of the harmonics. The harmonics p
a particular important role for the stability of the square p
terns. If they are cut off by the spatial low pass filter (L3,
P3, L4 in Fig. 1!, we observe the square pattern to decay
the roll solution, which is also compatible with a square t
get mask.

An important fact is that instead of a sharp onset of p
tern formation, we find that all amplitudes grow smooth
from zero. In particular, the subcritical bifurcation, whic
was expected for the hexagons is not obvious from the m
surement and may be hidden by the smooth onset. This
called imperfect bifurcationis well known from other sys-
tems, too @1#. It is caused by imperfections, namely, b
spatial inhomogeneities. A more detailed discussion ab
the influence of inhomogeneities will follow in the last se
tion.

We will now reconstruct a bifurcation diagram in th
phase amplitudesF̂(I p) from the measured relative optica
power pc . We assume that, close to threshold, the ph
amplitude follows the simple, quadratic dependence of
amplitude equation~4!. We use the quantitiesa, b, H, andI th
as fit parameters of a least squares fit, using a simplex d
search algorithm provided by the numerical packageMAT-

LAB.

FIG. 4. Fits of the theoretical curve into the measured rela
power in the critical mode. The data points included in the
are indicated by larger markers. The lower rhs plot shows
reconstructed ideal bifurcation diagramF̂(I p) with H50 ~dashed
line, rolls; dash-dotted line, squares; solid line, hexagons!.
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The relation between the relative power in the critic
wave number and the phase amplitudespc(F̂) is derived in
the Appendix. The corresponding Eqs.~A4!, ~A7!, and
~A11!, together with Eq.~A14!, cannot be inverted analyti
cally, so that we use a numerical interpolation instead.
additional fit parameter is the scaling ofpc , since this power
had not been determined in absolute values. The resu
these fits is shown in Fig. 4. From the fitted parameters,
can reconstruct the diagram of a perfect bifurcation by s
ting H50.

The lower limit of the data points included in the fit in
terval is chosen such that too small amplitudes with la
relative errors are excluded. For the hexagons and
squares, the upper bound is given by their range of existe
In general, the choice of the upper limit has to be a comp
mise. On one hand, the quadratic approximation Eq.~4! will
fail for too large pump intensities. On the other hand, clo
to threshold the smooth onset of the imperfect bifurcat
dominates, hiding the original bifurcation characteristi
The coefficients of the amplitude Eq.~4!, found by the fit are
displayed in Table I@20#.

The coefficientsa, b, H, and the thresholdI th are given in
mW/cm2. These coefficients depend on the chosen pump
tensity interval and on the fit start parameters, which lim
the reliability. However, the found thresholds are alwa
within a range of65 mW/cm2.

The thresholds for the different patterns are very close
each other and are in the order of the theoretical value
I th548.66 mW/cm2, as predicted by the linear stabilit
analysis. The threshold is quite sensitive to some of
LCLV parameters. For instance, a change in the diffus
lengthl by a few microns already leads to a similar change
the threshold. Hence, the dependence on room tempera
may already explain the observed difference between exp
mental and theoretical threshold. A further possible rea
for the deviation is discussed in Sec. V.

The fit also shows that the hexagon solution indeed bif
cates subcritically, but with a very small hysteresis, as p
dicted by D’Alessandro and Firth@15#. Whereas the roll and
square patterns are found to bifurcate normally, as expec
The coefficientH, describing the imperfect bifurcation, is a
least in the same order of magnitude for the three meas
ments, which is quite reasonable. Due to the dependenc
the fit interval and the number of coefficients fitted, this
may not be a rigorous proof. However, the fact that all co
ficients have the correct sign and are close to the expe
values indicates that the experiment and theory agree.

IV. NUMERICAL SIMULATIONS

For comparison, numerical simulations of the full quan
tative model of Eqs.~1! and~2! were carried out. In order to

e
t
e

TABLE I. Amplitude equation coefficients, found by a fit of the experimental data. The values ofa, b, H,
and I th are given inmW/cm2.

a b Ith H a8 b8 H8

Rolls 50.0 20.0003 63.0 24.54 0.794 24.231026 20.0720
Squares 50.3 20.0004 62.4 23.20 0.807 26.431026 20.0674
Hexagons 114.0 216.1 58.5 21.39 1.95 20.275 20.238
6-6
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get as close as possible to the ideal bifurcation characteri
we here chose periodic boundary conditions and did not
clude possible inhomogeneities.

The model equations are solved in several steps. In
time step, first, the propagation of the phase modulated p
wave is solved in Fourier space by multiplication of an a
propriate phase factor. The resulting field is then transform
back to real space, yielding the intensity distribution at
LCLV write side, from which the nonlinear phase response
computed. Diffusion is included by multiplication ofk2 to
the spatial Fourier transform of the observed ph
F(x,y,t1Dt). It has turned out that a simpler and fast
implicit-explicit scheme led to a small error, resulting in
noticeable deviation of the pattern formation threshold.

The simulations were run with a square grid with 252

grid points and a pattern aspect ratio of 30. The Fou
control scheme was implemented numerically by attenua
the nontarget modes of the phase modulated light field b
factor (12s). In general, the control strengths50.4 has
been chosen in accordance with the experimental value
the simulations, it was checked for each value of the pu
that the control signal decays. The fact that the average p
change between two integration steps falls below a given
boundary was taken as indication for convergence. From
resulting phase distributions, the different harmonics w
extracted in Fourier space by summing over all modes wit
a given annulus.

For roll and square patterns, it is not a problem to cho
the parameters such that the modes of the target pattern
actly match numerical grid points in Fourier space. For he
gons however, this can work only for one of the three mod
Hence, the computed pattern can never be exactly hexag
The approximation can be the better, the higher the cho
aspect ratio is. We mention this well-known detail, since
follows that in the simulations a number of nearly hexago
patterns coexist, which slightly differ from each other in re
tive angle and modulus of the three modes. The crucial p
is that these coexisting patterns also differ in amplitu
Therefore, care has to be taken in the choice of the ta
pattern modes to match the ideal critical hexagonal patter
close as possible.

Figure 5 shows the numerically found phase amplitude
the critical wave numberFc5F(0.8kc,k,1.2kc), and in
the harmonicsFh5F(1.2kc,k). Displayed therein are the
angular sums over the absolute amplitudes of all mode
these wave number bands. The phase amplitudesF̂ of the
critical wave number result from a division by the number
modes. The corresponding relative optical powers, wh
have been the experimentally accessible quantity, are
shown in Fig. 5.

For very high values of the pump, the numerical Four
control scheme can fail as well. For rolls aboveI p
'130 mW/cm2, the control strength had to be increased
s50.6, to prevent a transformation into spot patterns. Mo
over, unlike in the experiment we do not observe a transit
from hexagons to rolls for strong pump values. The transit
can however, be observed numerically, when the bounda
included in the simulation. This highlights the influence
boundaries on the selection of patterns.
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Pure square patterns are particularly difficult to stabili
As in the experiments, there is a strong tendency to fo
sheared squares. Depending on the diameter of the spo
the control mask, shearing is to a certain amount compat
with the target state. We have here considered the slig
sheared squares in order to be in accordance with the ex
ment. For illustration, the amplitudes of pure squaresh

markers, sheared squares haveLmarkers! are shown in Fig.
5 as well. Pure squares could only stabilize far from t
threshold with a larger control strength ofs50.6; we were
not able to observe them close to the threshold. It is rema
able that pure and sheared squares differ considerabl
their phase amplitudeFc , while the optical powerspc are
almost identical.

As before, we find a saturation of all amplitudes in t
critical mode, accompanied by a growth of harmonics. T
harmonics are particularly strong in the square patte
mainly through the contribution of the first mixed harmoni
at k5A2kc . This finding can be explained by the close se
ond unstable wave numberkc

(2) , promoting this harmonic
mode.

In contrast to the experiment, from the simulations we c
access the phase amplitude in absolute values. From th
we now see that the amplitudes asymptotically approach
maxima of the theoretical diffraction efficiencies, as deriv
in the Appendix~cf. Fig. 11!. This makes sense, as a furth
increase in phase amplitude would lead to a decrease o
corresponding optical power in the critical mode—which
turn would have to lead to a decrease in phase amplitu
The interesting point is that, even though the calculation
the Appendix neglects harmonics and higher unstable w
numbers, it seems to hold surprisingly well far above thre
old.

In Fig. 6, the numerical data points close to threshold
shown together with quadratic fits. The closeup reveals t
indeed, hexagons bifurcate subcritically, but with a ve

FIG. 5. Numerically determined total phase amplitudes~lhs col-
umn!, and relative optical power~rhs column! in the critical wave
number 0.8kc,k,1.2kc ~large markers!, and in the higher harmon
ics 1.2kc,k ~dots!.
6-7



e
d

e
ca
n
n

t
E

on
e

nt
no
re
m
o
m
r
e

h
w
a
va
th

di

y

xis-
ith a

-

se

on
en-
ot

f

s it

m-
rn

r-
In

ne-
nd-
eir
n-

of
rget
se
ro-
ny

in
ob-
ent
u-
fi-

tion

ld,
is

the
in

ld is

lly,
the
tern
de

nu-

a

pl

y
e

R. NEUBECKER AND E. BENKLER PHYSICAL REVIEW E65 066206
small hysteresis. The results for the rolls and squares ar
good agreement with the hypothesis that these solutions
velop from a normal bifurcation.

The fit results in the following coefficients:
a b a8 b8

Rolls 26.9 21.21 0.553 20.024
Squares 35.5 21.74 0.73 20.036
Hexagons 103.4 222.5 2.15 20.468

Again, the coefficientsa, b are given inmW/cm2.

For this fit, the thresholdI th has not been varied, since th
normally bifurcating solutions indeed start at the theoreti
threshold within the numerical error. Also, the coefficie
H50 was fixed to be zero, because the simulations do
contain imperfections. However, even whenI th and H are
left as free fit parameters, the resulting coefficientsa, b do
not change significantly andI th andH are very close to the
expected values. Again, the fit result depends somewha
the chosen interval, since the quadratic approximation in
~4! is valid only close to threshold.

As in the experimental finding, the hexagonal soluti
bifurcates subcritically (b,0), and rolls and squares can b
assumed to bifurcate normally (b'0), as predicted by the
theory. Actually, the values ofb are small, but do not really
vanish ~and are even larger than those in the experime!.
The explanation is that the numerical simulations have
always reached the perfect stationary state. For practical
sons, our convergence criterium had to be to put a small li
for the average phase change in each integration step. H
ever, particularly close to threshold, slowing down pheno
ena can make the corresponding time constants very la
and consequently the changes in each integration step
tremely small, requiring excessive integration times. In t
numerical runs, the pump intensity was decreased step
starting from a large value, so that the computed phase
plitudes are somewhat larger than the ideal asymptotic
ues. This results in a corresponding small upward shift of
fitted parabola.

Within these reservations, the agreement with the pre
tions of the Kerr model~7! is relatively good. However, we
find the coefficienta8 for the hexagons to be significantl
larger than that expected in their approximation.

FIG. 6. Left hand panel: numerically determined phase am

tudesF̂ together with fits~1 and - -, rolls;L and -• - , squares;>
and — , hexagons!. The upper limit of the fit range is indicated b
the vertical line. Right hand panel: corresponding optical pow
close to threshold.
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In the experimental measurement, the range of the e
tence of the hexagons starts about 1% below threshold w

finite amplitude ofF̂50.07. This compares quite well with

the numerical results, namelyF̂50.11 at 2.5% below thresh
old. The agreement of the coefficientsa and b between ex-
periment and simulations proves to be satisfactory.

Finally, the plot in Fig. 6 also illustrates that the pha

amplitudeF̂ is a better choice as variable for the derivati
of an amplitude equation. In contrast, the more linear dep
dence pc(I p) is less well approximated by a square-ro
function. The relations~A4!, ~A7!, and ~A13! already state
that, close to threshold, a square-root dependence oF̂
;AI p corresponds to a linear dependencepc;I p . The abso-
lute optical power would then be an even worse choice, a
grows quadratically with pump intensityPc;pcI p;I p

2 .

V. SPATIAL INHOMOGENEITIES

It is well known that spatial perturbations can cause i
perfect bifurcations and may lead to a shift of the patte
formation threshold@1#. However, the precise effect of a pa
ticular spatial perturbation is hard to predict beforehand.
our system, we identify three main candidates: inhomoge
ities of the nonlinearity, speckles and the presence of bou
aries. Numerical simulations allow one to investigate th
respective influence separately. In the following, we will i
clude each of the above inhomogeneities in a simulation
the system under Fourier control with hexagons as ta
state. The intention is to qualitatively identify the main cau
of the imperfect bifurcations, rather than to exactly rep
duce the experimental results, which would include too ma
unknown parameters.

A. Inhomogeneous nonlinearity

Our first assumption was that a slight inhomogeneity
the nonlinearity was the reason for the experimentally
served imperfect bifurcation. The thicknesses of the differ
layers of the LCLV can vary over the active area. In partic
lar, the fabrication of a planar photoconductor layer is dif
cult. The effect is that the nonlinear transfer functionS(I w)
in Eq. ~2!, and, as consequence, also the pattern forma
threshold, become space dependent.

On increasing the pump intensity from below thresho
the pattern starts to grow locally, where the local threshold
exceeded first. Under further increase of pump power,
pattern fills the active area. This effect is actually observed
the experiment, a snapshot of a pattern close to thresho
shown in Fig. 7.

Since the pattern amplitude is determined globa
namely, as amplitudes of the corresponding modes in
Fourier plane, the described gradual spreading of the pat
should result in a smooth growth of the pattern amplitu
and thus can be responsible for an imperfect bifurcation.

The inhomogeneous nonlinearity was included in the
merical simulations by replacingFmax→@11x(x,y)#Fmax
in Eq. ~2!. The inhomogeneity is smallux(x,y)u,1, with a
vanishing averagêx&x,y50. Since we suppose that it has

i-

r
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EMPIRICAL BIFURCATION ANALYSIS OF OPTICAL . . . PHYSICAL REVIEW E 65 066206
smooth profile, it is composed of small wave numbers w
random phases. The distributionx(x,y) used in the follow-
ing is shown in Fig. 8.

A number of simulations were run varying the strength
the inhomogeneity, characterized by its standard devia
std(x). As Fig. 8 shows, the inhomogeneity in the nonline
ity indeed causes a local growth of the pattern, correspo
ing to the experimental observation.

However, the resulting bifurcation diagrams do not sh
a significant deviation from the perfect bifurcation~Fig. 8!.
An increase of the strength of the inhomogeneity beyo
std(x).0.3 provokes dynamics and disorder and a failure

FIG. 7. Experimental snapshot of a pattern close to thresh
without control. The hexagonal pattern starts to grow locally, wh
the nonlinearity is most sensitive.

FIG. 8. Inhomogeneous nonlinearity: the upper left panel~a!
shows the distribution of the inhomogeneityx(x,y) used in the
simulations. In the upper right panel~b!, a typical resulting pattern
under Fourier control close to threshold is presented. The resu
bifurcation diagram is shown in the lower panel~c!. The parameter
is the strength std(x)50.1 ~solid!, 50.2 ~dashed!, and50.3 ~dash
dotted! of the inhomogeneity. The bold line gives the reference
the homogeneous case.
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the control scheme. Consequently, the real inhomogen
should be smaller, since this has not been observed ex
mentally.

B. Speckles

The second possible cause for the imperfect bifurcati
is the scattering in the experimental setup. Small imperf
tions of the optical components, dust particles, minim
scratches, and also thermal fluctuations in the liquid cry
layer scatter part of the pump beam. This leads to speck
i.e., broadband spatial noise. Even though in the experim
care had been taken to avoid scattering, speckles can n
be disregarded completely.

Numerically, the speckles have been included as ste
state, spatial white noise added to the pump waveEp
→Ep@11j(x,y)#, with j being complex. The phase and am
plitude of this noise has been chosen such that a given f
tion f of the total pump power is carried in nonzero Four
modes atkW5” 0.

In the simulations one can clearly observe, how, close
threshold, the system amplifies those noise contributio
which are near unstable wave numbers. Around thresh
the critical circles are broadly excited. Further above
threshold, this broad excitation collapses to the six hexa
target modes~Fig. 9!.

The resulting bifurcation diagrams are shown in the low
panel of Fig. 9 with the noise amplitudef as parameter. Al-
ready a small amount of speckles clearly causes an impe
bifurcation and leads to a shift of the threshold. Note that,
instance, a fraction off 55% corresponds to a very sma
speckle intensity. The grid point representing the zero or
mode in the Fourier plane carries a fraction (12 f )50.95,
whereas each of the remainingN5(256221) grid points
carries in average a fraction of onlyf /N,1026 of the pump

d,
e

g

r

FIG. 9. Effect of speckles. Upper panels: far field 5%~a! and
15% above threshold~b!. Lower graph~c!: corresponding bifurca-
tion diagrams; the parameter is the fractionf of the optical pump
power in the speckles. The bold line again is the reference of
homogeneous case.
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R. NEUBECKER AND E. BENKLER PHYSICAL REVIEW E65 066206
power. However, close to threshold, noise near the crit
wave numbers is substantially amplified.

This amplified noise contributes to the pattern mod
leading to a nonzero pattern amplitude already below thre
old and thus causing an imperfect bifurcation. Moreover,
inhomogeneous pump profile induces a noisy phase pro
which again scatters part of the pump wave into rand
modes. This effectively wastes pump power and theref
leads to an increase of the pattern threshold.

C. Boundary

Finally, we consider the boundary of the active ar
which—at least in the experiment—represents an unav
able spatial inhomogeneity. Boundaries are also known
induce imperfect bifurcations and to shift threshold@1#.
However, for the given aspect ratio of larger than 25, we h
expected that the influence of the boundary would be sm
Experimentally, the boundary is determined by the circu
apertureP2 ~cf. Fig. 1!. This aperture is located in a plan
which—due to the imaging by the lenses—is equivalent
the LCLV write side. Consequently, the write intensityI w is
forced to vanish outside the diameter of the aperture.

This kind of boundary has also been included in a num
cal simulation. To be even more realistic, the shape of
pump beam has been considered in an additional simula
While in the other simulations, the pump beam is assume
be a plane wave, in the experimental reality it is an expan
Gaussian beam with a diameter of around 3 cm. Hen
across the diameter of the aperture, the variation in the pu
intensity is in fact small.

These simulations reveal that the influence of the bou
ary is indeed quite strong. The fact that the pump beam is
exactly a plane wave also does have an effect, but much
than the mere presence of the boundary. The reason fo
strong influence of the boundary is visualized by linear c
through the pattern, as shown in Fig. 10. The pattern star
grow in the center, its amplitude significantly decays towa
the boundary.

The reason becomes clearer in a simple picture, when
remember the role of the Talbot effect in the pattern form
tion process: Due to this long-range~diffractional! coupling,
each individual bright spot is supported by the presence
~regularly arranged! spots in the neighborhood. These su
rounding spots are missing at the boundary.

The spatial range of this effect is rather large. Only w
increasing pump intensity, the spots more and more ga
similar amplitude. The fact that the pattern does not hav
uniform amplitude explains the smooth onset, i.e., the imp
fect bifurcation.

The Fourier control, applied in all of the above cases,
lead to an additional shift of the observed threshold. T
boundary introduces a large space scale and hence lead
broadening of all modes@10,11#. Depending on the size o
the spots on the Fourier mask, which block the target mo
outer parts of these broadened modes are suppressed. In
ticular, this concerns the zero mode, reducing the effec
pump power. However, this effect is hard to estimate sinc
is not obvious to which extent modes can be broadened
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still positively contribute to the pattern formation proces
From our simulations we find that the corresponding incre
in the observed threshold is less than 5%.

With respect to the different shifts in the threshold, t
discrepancy between the theoretical and experimentally
served thresholds is, in fact, smaller than it seemed at
sight.

VI. CONCLUSION

We have demonstrated that the Fourier space con
scheme is a valuable tool to access unstable regular solu
in spontaneous pattern formation. The properties of Fou
optics and the superposition principal of light waves ma
optical systems excellently suited for an implementation
this scheme. In contrast to a number of previous approac
the control is spatially continuous and not restricted to a f
local sites.

By stabilizing and tracking the generic, regular patte
solutions under variation of the stress parameter, an exp
mental bifurcation diagram was determined in an opti
single-feedback system. The observed bifurcations are
perfect, which at first sight hides the behavior close
threshold. However, by fitting the theoretical dependence
given by a prototype amplitude equation, it was possible
retrieve the bifurcation characteristics. The application of
Fourier space control also allowed us to go far above
threshold, where a saturation of the pattern amplitudes

FIG. 10. Effect of a circular boundary. Upper panels: patte
0.05% below threshold~a! and 23% above threshold~b!. Linear
cuts through the images~c!,~d! demonstrate the decay of the patte
amplitude near the boundary. Lower graph~e!: corresponding bifur-
cation diagram without~solid line! and with ~dash-dotted line! in-
clusion of the Gaussian pump profile. The bold line again is
reference of the homogeneous case.
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observed, accompanied by the growth of harmonics
higher wave numbers.

For comparison, numerical simulations of the full mod
were carried out. The experimental thresholds are in g
agreement as well with the simulations as with the lin
stability analysis of the model. Both numerics and expe
ment show that the hexagons bifurcate subcritically, but w
a small hysteresis, as predicted by amplitude equations f
simpler model. The fitted coefficients of the amplitude eq
tion are in reasonable agreement between experiment
numerics.

More detailed simulations revealed that the boundary
also the presence of speckles, experimentally caused by
tering in the setup, cause an imperfect bifurcation. B
mechanisms are also observed to cause an increase i
pattern formation threshold. In contrast to a first assumpt
the role of inhomogeneities in the nonlinearity itself is ob
ously very small. The influence of the boundary and scat
ing is much stronger than expected in the first place. E
weak broadband spatial noise in the form of speckles ha
considerable effect. From our findings we conclude that
experimental determination of the perfect bifurcation d
gram would demand extreme aspect ratios and the absen
any sources of spatial noise.
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APPENDIX: PHASE AND INTENSITY AMPLITUDES

In the following, we will establish the relation betwee
spatially periodic phase distributions and the correspond
power spectra. This gives the connection between the am
tude of the spontaneously formed phase patterns and
spectral intensity distribution. This problem is equivalent
the derivation of diffraction efficiencies of two-dimension
phase gratings, a typical problem in Fourier optics@21#.

We will consider the three prototypes of periodic pha
distributions, determined by a single wave numberkc ,
namely roll, square, and hexagon profiles,

F5F̂(
n51

N

cos~kWnrW1cn!, kWn5kcS cos~2np/N!

sin~2np/N! D
~A1!

with N51,2,3 respectively, and a phase amplitudeF̂.
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We start with the simplest case of a roll pattern (N

51): F (r )5F̂(r )cos(kW1rW). In this case, the spatial phasec
can be omitted, since it just represents a spatial shift in
planerW5(x,y) and corresponds to the choice of the orig
We now have to determine the Fourier spectrum of a w
E5Ep exp(2iF) with the above phase distribution. The fie
can be rewritten as~Neumann! series over Bessel function
of the first kind

E(r )5Ep exp@2 i F̂(r ) cos~kW1rW !#

5Ep (
n52`

`

~2 i !n exp~ inkW1rW !Jn~F̂(r )!. ~A2!

Clearly, there are only discrete Fourier modes atkW5nkW1
with relative amplitudes of

hn
(r )[

E(r )~kW5nkW1!

Ep
5~2 i !nJn~F̂(r )!. ~A3!

In the context of diffraction at phase gratings,h is the dif-
fraction efficiency.

The intensity in the first order is proportional to the mod
lus square of the field amplitude,

uh1
(r )u25

uE(r )u2

uEpu2
5J1

2~F̂(r )!'
F̂(r )2

4
, ~A4!

a result which is well known in Fourier optics@21#.
The proceeding for a square phase pattern

F (s)5F̂(s)@cos~kW1rW !1cos~kW2rW !# ~A5!

is similarly simple, since the two involved Fourier mod
kW1'kW2 are perpendicular to each other. As before, the pha
cn can be omitted. Again, the phase modulated field is
panded in a Bessel series from which we derive the diffr
tion efficiencyhm,n

(s) for a Fourier mode atkW5mkW11nkW1 ,

hm,n
(s) 5~2 i !m1nJm~F̂(r )!Jn~F̂(r )!. ~A6!

This leads to a relative intensity in a first order mo
(umu51, n50 or m50, unu51) of

uh1
(s)u25

uE(s)u2

uEpu2
5J0

2~F̂(s)!J1
2~F̂(s)!'

F̂(s)2

4
. ~A7!

The case of the hexagonal phase distribution

F (h)5F̂(h)@cos~kW1rW1c1!1cos~kW2rW1c2!1cos~kW3rW1c3!#
~A8!

with kW11kW21kW350 is much less straightforward. First, w
cannot omit the phasescn here, since we have only two
degrees of freedom in the choice of the coordinate origin
practice, there are only two cases of interest which are c
acterized by maximal peak-to-peak phase amplitudes,
6-11
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(
n51

3

cn50: positive hexagons with phase peaks, or

(
n51

3

cn5p: negative hexagons

with phase dips~honeycombs!.

We can retain a single phasec5cn50, or 5p/3, respec-
tively.

The second problem arises from the fact that the th
modes are not independent. This becomes clear in the ex
sion of the field

E(h)5Epexp@2 i F̂(h)cos~kW1rW !#exp@2 i F̂(h)cos~kW2rW !#

3exp@2 i F̂(h)cos~kW3rW !#

5Ep (
l ,m,n52`

`

~2 i ! l 1m1nJl~F̂(r )!Jm~F̂(r )!

3Jn~F̂(r )!exp@ i ~ lkW11mkW21nkW3!rW#

3exp@ i ~ l 1m1n!c#. ~A9!

Again, we find discrete Fourier modes, but now the am
tudes of each depend on an infinite set of possible lin
combinationskW lmn5 lkW11mkW21nkW3.

We will focus on the first order modes, where the line
combinations result in one of the constituent modeskW lmn

5kW1. This mode results from all wave vector combinatio
which fulfill m5n5 l 21. Inserting this condition into Eq
~A9!, we get

h1
(h)5

E(h)~kW5kW1!

Ep

5 (
m52`

`

~2 i !2m11Jm
2 ~F̂(h)!Jm11~F̂(h)!ei (3m11)c.

~A10!

The expression can be rearranged for positive hexagonc
50) to

h1
(h1)52 iJ0

2~F̂(h)!J1~F̂(h)!

1 (
m51

`

i m11Jm
2 ~F̂(h)!@Jm21~F̂(h)!2Jm11~F̂(h)!#,

~A11!

and for negative hexagons (c5p/3) to
06620
e
an-

-
ar

r

(

h1
(h2)5eip/3H 2 iJ0

2~F̂(h)!J1~F̂(h)!

1 (
m51

`

~21!mi m11Jm
2 ~F̂(h)!

3@Jm21~F̂(h)!2Jm11~F̂(h)!#J . ~A12!

The resulting relative intensities in the first order are iden
cal for positive and negative hexagons and can be appr
mated by

uh1
(h)u2'J0

4~F̂(h)!J1
2~F̂(h)!1J0

2~F̂(h)!J1
4~F̂(h)!

'
F̂(h)2

4
S 12

F̂(h)2

4
D 2

. ~A13!

For the total power in the first orderPc5P(ukW u5kc), we
have to consider the number of modesN,

pc5
Pc

Pp
52Nuh1u2 ~A14!

here scaled by the total optical powerPp of the incident

wave. These relative powerspc(F̂) are plotted in Fig. 11.
All curves have distinct maxima located at

pc
(r )~F̂51.83!50.677, pc

(s)~F̂51.07!50.460,

pc
(h)~F̂50.928!50.516. ~A15!

The above calculations are based on the assumption in
~A1! that the phase distributionF(rW) contains only a single

FIG. 11. Optical powerpc , relative to the incident power, in the
first diffraction order of periodic phase distributions with ro
square, and hexagonal symmetry.
6-12
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wave numberukWnu5kc . In so far, the results are applicable
the spontaneously formed patterns until higher harmo
start to contribute significantly. The effects of higher h
monics are not simple to estimate. If they were indepen
u-
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of the basic modes considered so far, they would just
crease the available total intensity by diffracting it into oth
orders. The interaction between harmonic and basic mo
can, however, lead to energy transfer in both directions.
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